Tinymal-B感知教程5-基于TensorRT完成YoloV5 的加速

本教程采用TensorRTV5.0版本,YoloV5-5.0版本,请注意否则生成engine时会出错

1 TensorRT直接导出engine加速

TensorRT是nvidia家的一款高性能深度学习推理SDK。此SDK包含深度学习推理优化器和运行环境,可为深度学习推理应用提供低延迟和高吞吐量。在推理过程中,基于TensorRT的应用程序比仅仅使用CPU作为平台的应用程序要快40倍。
从应用上来说就是将原始yolov5采用的网络参数进行优化,提高计算与识别的实时性,首先下载源码:
注意需要下载V5.0的版本,cd进入其中的tensorrtx/yolov5地址建立编译空间:
mkdir build cd build
在yolov5目录中python脚本gen_wts.py完成对权重系数的转换,为了计算速度这里需要选择YoloV5,5.0版本对应的YoloV5n(5.0版本不支持5n):
https://gitcode.net/mirrors/wang-xinyu/tensorrtx/-/tree/yolov5-v5.0
python gen_wts.py -w yolov5s.pt -o yolov5s.wts
然后修改文件夹下的yololayer.h配置需要的网络输入与输入,对于实时性需求,我们可以减小INPUT_H ,INPUT_W为320*320提高计算速度:
#ifndef _YOLO_LAYER_H #define _YOLO_LAYER_H #include <vector> #include <string> #include <NvInfer.h> #include "macros.h" namespace Yolo { static constexpr int CHECK_COUNT = 3; static constexpr float IGNORE_THRESH = 0.25f; struct YoloKernel { int width; int height; float anchors[CHECK_COUNT * 2]; }; static constexpr int MAX_OUTPUT_BBOX_COUNT = 10; static constexpr int CLASS_NUM = 80; static constexpr int INPUT_H = 320; // yolov5's input height and width must be divisible by 32. static constexpr int INPUT_W = 320; static constexpr int LOCATIONS = 4; struct alignas(float) Detection { //center_x center_y w h float bbox[LOCATIONS]; float conf; // bbox_conf * cls_conf float class_id; }; } namespace nvinfer1 { class API YoloLayerPlugin : public IPluginV2IOExt { public: YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector<Yolo::YoloKernel>& vYoloKernel); YoloLayerPlugin(const void* data, size_t length); ~YoloLayerPlugin(); int getNbOutputs() const TRT_NOEXCEPT override { return 1; } Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) TRT_NOEXCEPT override; int initialize() TRT_NOEXCEPT override; virtual void terminate() TRT_NOEXCEPT override {}; virtual size_t getWorkspaceSize(int maxBatchSize) const TRT_NOEXCEPT override { return 0; } virtual int enqueue(int batchSize, const void* const* inputs, void*TRT_CONST_ENQUEUE* outputs, void* workspace, cudaStream_t stream) TRT_NOEXCEPT override; virtual size_t getSerializationSize() const TRT_NOEXCEPT override; virtual void serialize(void* buffer) const TRT_NOEXCEPT override; bool supportsFormatCombination(int pos, const PluginTensorDesc* inOut, int nbInputs, int nbOutputs) const TRT_NOEXCEPT override { return inOut[pos].format == TensorFormat::kLINEAR && inOut[pos].type == DataType::kFLOAT; } const char* getPluginType() const TRT_NOEXCEPT override; const char* getPluginVersion() const TRT_NOEXCEPT override; void destroy() TRT_NOEXCEPT override; IPluginV2IOExt* clone() const TRT_NOEXCEPT override; void setPluginNamespace(const char* pluginNamespace) TRT_NOEXCEPT override; const char* getPluginNamespace() const TRT_NOEXCEPT override; DataType getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const TRT_NOEXCEPT override; bool isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const TRT_NOEXCEPT override; bool canBroadcastInputAcrossBatch(int inputIndex) const TRT_NOEXCEPT override; void attachToContext( cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) TRT_NOEXCEPT override; void configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) TRT_NOEXCEPT override; void detachFromContext() TRT_NOEXCEPT override; private: void forwardGpu(const float* const* inputs, float *output, cudaStream_t stream, int batchSize = 1); int mThreadCount = 256; const char* mPluginNamespace; int mKernelCount; int mClassCount; int mYoloV5NetWidth; int mYoloV5NetHeight; int mMaxOutObject; std::vector<Yolo::YoloKernel> mYoloKernel; void** mAnchor; }; class API YoloPluginCreator : public IPluginCreator { public: YoloPluginCreator(); ~YoloPluginCreator() override = default; const char* getPluginName() const TRT_NOEXCEPT override; const char* getPluginVersion() const TRT_NOEXCEPT override; const PluginFieldCollection* getFieldNames() TRT_NOEXCEPT override; IPluginV2IOExt* createPlugin(const char* name, const PluginFieldCollection* fc) TRT_NOEXCEPT override; IPluginV2IOExt* deserializePlugin(const char* name, const void* serialData, size_t serialLength) TRT_NOEXCEPT override; void setPluginNamespace(const char* libNamespace) TRT_NOEXCEPT override { mNamespace = libNamespace; } const char* getPluginNamespace() const TRT_NOEXCEPT override { return mNamespace.c_str(); } private: std::string mNamespace; static PluginFieldCollection mFC; static std::vector<PluginField> mPluginAttributes; }; REGISTER_TENSORRT_PLUGIN(YoloPluginCreator); }; #endif // _YOLO_LAYER_H
之后将得到的.wts文件拷贝到build目录下编译转换器:
cmake .. make
然后使用得到的文件转换为engine:
./yolov5 -s yolov5s.wts yolov5s.engine s
## Below content will show if program success Loading weights: best.wts
Building engine, please wait for a while...
Build engine successfully!
参考资料:
常见错误:
由于JetsonNano显存很小,如果启动YoloV5和Rviz可能导致死机,我们建议用PC启动Rviz显示,并在使用时关闭远程桌面,下面关闭图像的操作仅供参考:
如果需要关闭JetsonNano图形界面加快识别可以使用,但是并不建议,容易造成开机黑屏:
sudo systemctl set-default graphical.target
重启后重新打开:
sudo systemctl set-default graphical.target
安装无误后进行测试,启动程序可以看到识别帧率达到20帧左右:
roslaunch robot_vslam camera.launch roslaunch yolov5_ros yolo_v5f.launch roslaunch robot_navigation multi_navigation.launch
可以看到通过tensorrtx加速相比原始版本可以达到基本实时的状态,但是当目标数量较多时其识别的帧率也会下降!
识别结果,5.0版本识别精度不高,有需要可以安装高版本,但是如果更新python ROS相关包都需要重新安装,容易造成镜像损坏
速度文档在20帧左右

2 通过ONNX加速

除了采用TensorRT直接导出engine加速外,还可以先将pt参数先转换为通用onnx格式,然后调研简化器,之后再将简化后的onnx转换会engine,具体流程如下:
安装依赖:
sudo apt-get install protobuf-compiler libprotoc-dev pip3 install onnx==1.11.0
将yolo5原始参数转换为onnx:
python3 ./export.py --weights ./yolov5s.pt --img 640 --batch 1 --include=onnx
如果没有该export文件可以新建如下py脚本:
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit Format | `export.py --include` | Model --- | --- | --- PyTorch | - | yolov5s.pt TorchScript | `torchscript` | yolov5s.torchscript ONNX | `onnx` | yolov5s.onnx OpenVINO | `openvino` | yolov5s_openvino_model/ TensorRT | `engine` | yolov5s.engine CoreML | `coreml` | yolov5s.mlmodel TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ TensorFlow GraphDef | `pb` | yolov5s.pb TensorFlow Lite | `tflite` | yolov5s.tflite TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite TensorFlow.js | `tfjs` | yolov5s_web_model/ Usage: $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... Inference: $ python path/to/detect.py --weights yolov5s.pt # PyTorch yolov5s.torchscript # TorchScript yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn yolov5s.xml # OpenVINO yolov5s.engine # TensorRT yolov5s.mlmodel # CoreML (MacOS-only) yolov5s_saved_model # TensorFlow SavedModel yolov5s.pb # TensorFlow GraphDef yolov5s.tflite # TensorFlow Lite yolov5s_edgetpu.tflite # TensorFlow Edge TPU TensorFlow.js: $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example $ npm install $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model $ npm start """ import argparse import json import os import platform import subprocess import sys import time from pathlib import Path import torch import torch.nn as nn from torch.utils.mobile_optimizer import optimize_for_mobile FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import Conv from models.experimental import attempt_load from models.yolo import Detect from utils.activations import SiLU from utils.datasets import LoadImages from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr, file_size, print_args, url2file) from utils.torch_utils import select_device def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): # YOLOv5 TorchScript model export try: LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') f = file.with_suffix('.torchscript') ts = torch.jit.trace(model, im, strict=False) d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) else: ts.save(str(f), _extra_files=extra_files) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): # YOLOv5 ONNX export try: check_requirements(('onnx',)) import onnx LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') f = file.with_suffix('.onnx') torch.onnx.export(model, im, f, verbose=False, opset_version=opset, training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, do_constant_folding=not train, input_names=['images'], output_names=['output'], dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) } if dynamic else None) # Checks model_onnx = onnx.load(f) # load onnx model onnx.checker.check_model(model_onnx) # check onnx model # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print # Simplify if simplify: try: check_requirements(('onnx-simplifier',)) import onnxsim LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') model_onnx, check = onnxsim.simplify( model_onnx, dynamic_input_shape=dynamic, input_shapes={'images': list(im.shape)} if dynamic else None) assert check, 'assert check failed' onnx.save(model_onnx, f) except Exception as e: LOGGER.info(f'{prefix} simplifier failure: {e}') LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'{prefix} export failure: {e}') def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')): # YOLOv5 OpenVINO export try: check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ import openvino.inference_engine as ie LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') f = str(file).replace('.pt', '_openvino_model' + os.sep) cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}" subprocess.check_output(cmd, shell=True) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_coreml(model, im, file, prefix=colorstr('CoreML:')): # YOLOv5 CoreML export try: check_requirements(('coremltools',)) import coremltools as ct LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') f = file.with_suffix('.mlmodel') ts = torch.jit.trace(model, im, strict=False) # TorchScript model ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) ct_model.save(f) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return ct_model, f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return None, None def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt try: check_requirements(('tensorrt',)) import tensorrt as trt if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 grid = model.model[-1].anchor_grid model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] export_onnx(model, im, file, 12, train, False, simplify) # opset 12 model.model[-1].anchor_grid = grid else: # TensorRT >= 8 check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 export_onnx(model, im, file, 13, train, False, simplify) # opset 13 onnx = file.with_suffix('.onnx') LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' assert onnx.exists(), f'failed to export ONNX file: {onnx}' f = file.with_suffix('.engine') # TensorRT engine file logger = trt.Logger(trt.Logger.INFO) if verbose: logger.min_severity = trt.Logger.Severity.VERBOSE builder = trt.Builder(logger) config = builder.create_builder_config() config.max_workspace_size = workspace * 1 << 30 flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) network = builder.create_network(flag) parser = trt.OnnxParser(network, logger) if not parser.parse_from_file(str(onnx)): raise RuntimeError(f'failed to load ONNX file: {onnx}') inputs = [network.get_input(i) for i in range(network.num_inputs)] outputs = [network.get_output(i) for i in range(network.num_outputs)] LOGGER.info(f'{prefix} Network Description:') for inp in inputs: LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') for out in outputs: LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') half &= builder.platform_has_fast_fp16 LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}') if half: config.set_flag(trt.BuilderFlag.FP16) with builder.build_engine(network, config) as engine, open(f, 'wb') as t: t.write(engine.serialize()) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_saved_model(model, im, file, dynamic, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, conf_thres=0.25, prefix=colorstr('TensorFlow SavedModel:')): # YOLOv5 TensorFlow SavedModel export try: import tensorflow as tf from tensorflow import keras from models.tf import TFDetect, TFModel LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = str(file).replace('.pt', '_saved_model') batch_size, ch, *imgsz = list(im.shape) # BCHW tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) keras_model = keras.Model(inputs=inputs, outputs=outputs) keras_model.trainable = False keras_model.summary() keras_model.save(f, save_format='tf') LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return keras_model, f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') return None, None def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')): # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow try: import tensorflow as tf from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') f = file.with_suffix('.pb') m = tf.function(lambda x: keras_model(x)) # full model m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) frozen_func = convert_variables_to_constants_v2(m) frozen_func.graph.as_graph_def() tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')): # YOLOv5 TensorFlow Lite export try: import tensorflow as tf LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') batch_size, ch, *imgsz = list(im.shape) # BCHW f = str(file).replace('.pt', '-fp16.tflite') converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] converter.target_spec.supported_types = [tf.float16] converter.optimizations = [tf.lite.Optimize.DEFAULT] if int8: from models.tf import representative_dataset_gen dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] converter.target_spec.supported_types = [] converter.inference_input_type = tf.uint8 # or tf.int8 converter.inference_output_type = tf.uint8 # or tf.int8 converter.experimental_new_quantizer = False f = str(file).replace('.pt', '-int8.tflite') tflite_model = converter.convert() open(f, "wb").write(tflite_model) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')): # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ try: cmd = 'edgetpu_compiler --version' help_url = 'https://coral.ai/docs/edgetpu/compiler/' assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' if subprocess.run(cmd, shell=True).returncode != 0: LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', 'sudo apt-get update', 'sudo apt-get install edgetpu-compiler']: subprocess.run(c, shell=True, check=True) ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model cmd = f"edgetpu_compiler -s {f_tfl}" subprocess.run(cmd, shell=True, check=True) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): # YOLOv5 TensorFlow.js export try: check_requirements(('tensorflowjs',)) import re import tensorflowjs as tfjs LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') f = str(file).replace('.pt', '_web_model') # js dir f_pb = file.with_suffix('.pb') # *.pb path f_json = f + '/model.json' # *.json path cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}' subprocess.run(cmd, shell=True) json = open(f_json).read() with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order subst = re.sub( r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}, ' r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, ' r'"Identity_1": {"name": "Identity_1"}, ' r'"Identity_2": {"name": "Identity_2"}, ' r'"Identity_3": {"name": "Identity_3"}}}', json) j.write(subst) LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') return f except Exception as e: LOGGER.info(f'\n{prefix} export failure: {e}') @torch.no_grad() def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' weights=ROOT / 'yolov5s.pt', # weights path imgsz=(640, 640), # image (height, width) batch_size=1, # batch size device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu include=('torchscript', 'onnx'), # include formats half=False, # FP16 half-precision export inplace=False, # set YOLOv5 Detect() inplace=True train=False, # model.train() mode optimize=False, # TorchScript: optimize for mobile int8=False, # CoreML/TF INT8 quantization dynamic=False, # ONNX/TF: dynamic axes simplify=False, # ONNX: simplify model opset=12, # ONNX: opset version verbose=False, # TensorRT: verbose log workspace=4, # TensorRT: workspace size (GB) nms=False, # TF: add NMS to model agnostic_nms=False, # TF: add agnostic NMS to model topk_per_class=100, # TF.js NMS: topk per class to keep topk_all=100, # TF.js NMS: topk for all classes to keep iou_thres=0.45, # TF.js NMS: IoU threshold conf_thres=0.25 # TF.js NMS: confidence threshold ): t = time.time() include = [x.lower() for x in include] tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs')) # TensorFlow exports file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # Checks imgsz *= 2 if len(imgsz) == 1 else 1 # expand opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12 # Load PyTorch model device = select_device(device) assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model nc, names = model.nc, model.names # number of classes, class names # Input gs = int(max(model.stride)) # grid size (max stride) imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection # Update model if half: im, model = im.half(), model.half() # to FP16 model.train() if train else model.eval() # training mode = no Detect() layer grid construction for k, m in model.named_modules(): if isinstance(m, Conv): # assign export-friendly activations if isinstance(m.act, nn.SiLU): m.act = SiLU() elif isinstance(m, Detect): m.inplace = inplace m.onnx_dynamic = dynamic if hasattr(m, 'forward_export'): m.forward = m.forward_export # assign custom forward (optional) for _ in range(2): y = model(im) # dry runs LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)") # Exports f = [''] * 10 # exported filenames if 'torchscript' in include: f[0] = export_torchscript(model, im, file, optimize) if 'engine' in include: # TensorRT required before ONNX f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose) if ('onnx' in include) or ('openvino' in include): # OpenVINO requires ONNX f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) if 'openvino' in include: f[3] = export_openvino(model, im, file) if 'coreml' in include: _, f[4] = export_coreml(model, im, file) # TensorFlow Exports if any(tf_exports): pb, tflite, edgetpu, tfjs = tf_exports[1:] if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' model, f[5] = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model if pb or tfjs: # pb prerequisite to tfjs f[6] = export_pb(model, im, file) if tflite or edgetpu: f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100) if edgetpu: f[8] = export_edgetpu(model, im, file) if tfjs: f[9] = export_tfjs(model, im, file) # Finish f = [str(x) for x in f if x] # filter out '' and None LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)' f"\nResults saved to {colorstr('bold', file.parent.resolve())}" f"\nVisualize with https://netron.app" f"\nDetect with `python detect.py --weights {f[-1]}`" f" or `model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')" f"\nValidate with `python val.py --weights {f[-1]}`") return f # return list of exported files/dirs def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') parser.add_argument('--batch-size', type=int, default=1, help='batch size') parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--half', action='store_true', help='FP16 half-precision export') parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') parser.add_argument('--train', action='store_true', help='model.train() mode') parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes') parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') parser.add_argument('--include', nargs='+', default=['torchscript', 'onnx'], help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs') opt = parser.parse_args() print_args(FILE.stem, opt) return opt def main(opt): for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)
安装简化器,如果出错则需要先更新cmake,因此我们建议以上简化过程最好在PC下Ubuntu虚拟机完成而不是在JetsonNano中:
CMake Error at CMakeLists.txt:21 (cmake_minimum_required): CMake 3.13 or higher is required. You are running version 3.10.2 -- Configuring incomplete, errors occurred!
更新cmake:
git clone https://github.com/Kitware/CMake ./bootstrap.sh make sudo make install cmake --version
更新gcc,g++:
sudo apt-get install gcc-8 sudo apt-get install g++-8
配置为默认启动:
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 100 sudo update-alternatives --config gcc sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-8 100 sudo update-alternatives --config g++
安装简化器:
pip3 install onnx-simplifier
优化模型:
python3 -m onnxsim ./yolov5s.onnx ./sim_yolov5s.onnx
最终新建如下脚本,修改对应文件名和输出路径后在JetsonNano上运行,将优化后的onnx导出为engine,之后再yolov5中调用方式与之前一样:
import tensorrt as trt import sys import os TRT_LOGGER = trt.Logger(trt.Logger.WARNING) EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) def printShape(engine): for i in range(engine.num_bindings): if engine.binding_is_input(i): print("input layer: {}, shape is: {} ".format(i, engine.get_binding_shape(i))) else: print("output layer: {} shape is: {} ".format(i, engine.get_binding_shape(i))) def onnx2trt(onnx_path, engine_path): with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser: builder.max_workspace_size = 1 << 28 # 256MB with open(onnx_path, 'rb') as model: parser.parse(model.read()) engine = builder.build_cuda_engine(network) printShape(engine) with open(engine_path, "wb") as f: f.write(engine.serialize()) if __name__ == "__main__": input_path = "./sim_yolov5s.onnx" output_path = input_path.replace('.onnx', '.engine') onnx2trt(input_path, output_path)
注:目前采用该方法导出后,可能是相关参数配置有问题,相比方法1速度慢很多,如果有了解的人可以在QQ群解答!
2023-02-26